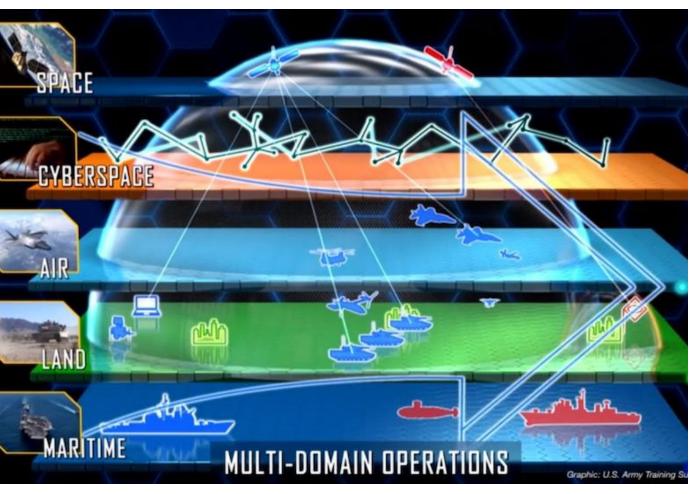
Unclassified

Doolittle Institute Technical Showcase Multi-Domain Weapons Technologies – Part II: Tailorable Trajectories

Dr. Anne Marie Petrock, ST


US ARMY DEVCOM, Picatinny Arsenal, NJ

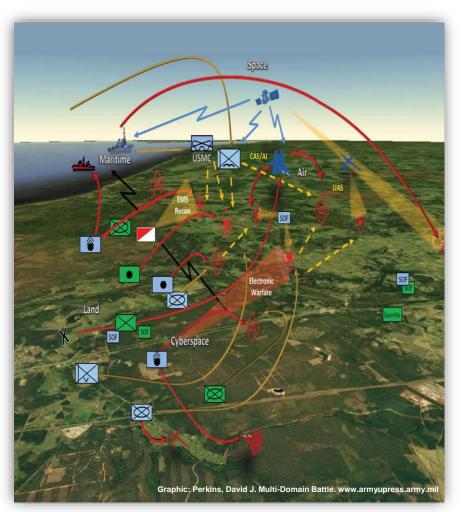
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

Multi-domain operations (MDO) are military operations across all domains, enabled by integrated systems and strategies

Operations are dynamic, complex and engage multiple operational nodes

NATIONAL DEFENSE STRATEGY: THREE CORE TENETS

Integrated deterrence


 Deter adversaries by synchronizing efforts across warfighting domains, regions and the spectrum of conflict in conjunction with all instruments of U.S. national power

Campaigning

 Sequencing logically linked military activities to shift the security environment in favor of the United States

Building enduring advantages

 Accelerating DoD modernization for the future fight

Source: Association of the US Army

KEY ENABLING TECHNOLOGIES FOR INTEGRATED DETERRENCE AND CAMPAIGNING Enable long duration operations for real-time target discrimination and identification, tracking, aim-point selection, prosecution

- Advanced Fire-control/propulsion coupling
- Advanced data collection and processing
- Next generation dynamic propulsion technologies
- Novel initiation, energetics, and tailorable trajectories

Distribution Statement A: Approved for Public Release Distribution Unlimited Unclassified

Unclassified

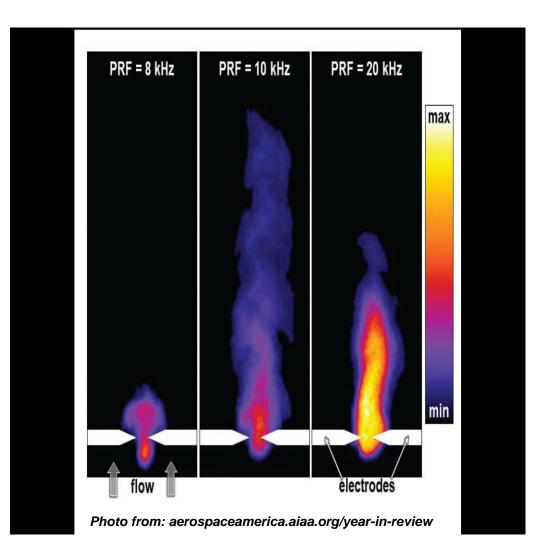
Dynamic Fire control/propulsion coupling, Advanced Data Analytics, Next Gen Propulsion

On-the-fly discrimination and targeting using fusion of sensor and effector information

- Power hungry multiple modalities for sensing, discriminating, prosecution – two-way communications between all nodes and commanders
- Latency need real-time sensing and battlefield mapping, analysis, decision making, communications to command and other nodes
- Robustness Al/computer vision challenges; spoofing, miscalculations, weather, contested areas, etc.

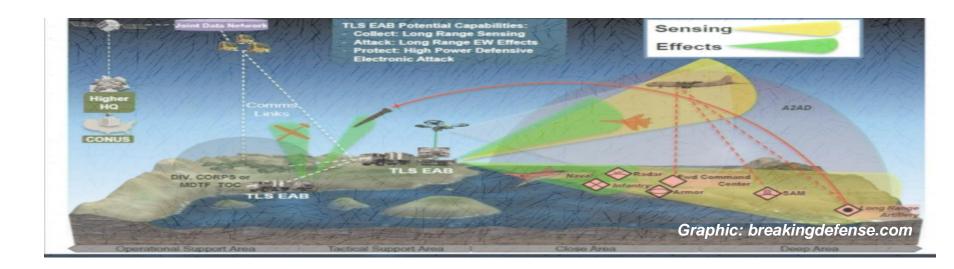
Deeper fires, Extended Ranges and Durations

- Survivability/Robustness Estimate initial trajectory conditions; adapt for counter-measures, battlefield, nodes
- Range typically constant burn rate, initiated at launch;
 size scales with duration limits other capabilities
- Terminal Engagement Need maneuver authority to close with target; must have reserve power to engage
- Adapt Modify trajectory to close with dynamic targets using modular propelling charges and rocket motors


Distribution Statement A: Approved for Public Release Distribution Unlimited Unclassified

NOVEL INITIATION, ENERGETICS, AND TAILORABLE TRAJECTORIES

- Ignition adapts during trajectory, terminal maneuvers and target engagement – temporal and spatial
- Not just fixed firing tables and sensing: on-board analytics to determine muzzle velocities combined with assets and battlefield mapping to achieve desired outcomes
- Extended range and duration of travel enabled by intelligent propulsion, burn rates and on-board fire control for target prioritization and prosecution


Unclassified

CONCLUSION

- Component technology development and system integration is critical to transforming the military landscape
- Jumping down the path of buzzy technologies like AI/ML may not be the cure all; attention to simple countermeasures of denial, deception and camouflage during design and integration is critical.
- System must be robust to loss of nodes, communications, etc
- System must be modular, inter-operable and stand-alone capable

